□ الموسم الدراسي. 2013.2014

مدة الانجاز ساعتين

□فرض محرو س رقم 3 الدورة الاولى في مادة الرياضيات

الاستاذ عروان الشركي

السنة الثانية بكالوريا علوم تجريبية

	`	,	U2		
- r	. 4 .	11 70	1 94 11	الدالة العددية	
	+ 1 .	\cdot Aldor R		aissoll allsil	, iïo i

 $g(x) = (1-x)e^{-x} + 1$ نعتبر الدالة العددية المعرفة على R بمايلي: $a(0.5) \ \forall x \in R \ g'(x) = \frac{x-2}{e^x}$ بين أن $-a(1-x)e^{-x}$

التمرين الثالث (8نقط)

 $(0.5)\ \forall x\in]-\infty;2$ بين ان g تز ايدية d وان d وان d تناقصية d بين ان d تز ايدية d وان d وان d على المجال d بثم أحسب d على المجال d على المجال d بثم أحسب d

 $(0.5) \ \forall x \in R; g(x) \ge 0$ بين ان الدالة $0 \ge 0$ بين ان الدالة الدوء الثانى:

 $f\left(x\right)=xe^{-x}+x$: نعتبر الدالة العددية المعرفة على R : بمايلي

 $\lim_{x \to +\infty} \frac{f(x)}{x}$ ثم $\lim_{x \to +\infty} f(x)$ احسب -a(1)

 $(01.5)+\infty$ وبين أن $\lim_{x\to +\infty} \left[f\left(x\right) -x \right] = 0$ ثم حدد الفرع اللانهائي بجوار

 $\left(\partial 1 \right) - \infty$ בער וואנישוזים, באר ווא $\lim_{x \to -\infty} f \left(x \right)$ ובער וואנישוזים. הא

 $\left(\dot{\omega}0.5
ight) \,y\,=x\,$ ادرس الوضع النسبي بين $\,-c\,$

(0.5) بین أن $\forall x \in R; f'(x) = g(x)$ ثم اعط جدول تغیر ات -a(3)

 $\left(0.05\right) o\left(0.0\right)$ كتب معادلة المماس المنحنى عند النقطة المماس $\left(0.05\right)$

(ن) بين أن $\forall x \in R \ ; f \ ''(x) = g'(x)$ ثم حدد نقطة الانعطاف (5) بين أن أنشئ المنحنى $(i) \ C_f$

(i3)التمرين الرابع

(0.1.5): احسب النهايت التالية -a(1

 $\lim_{x \to 0^{-}} \frac{e^{\frac{1}{x}}}{x} \qquad \lim_{x \to +\infty} \left(x^{2} - 1 - xe^{x}\right) \lim_{x \to -\infty} \left(x - x^{2}\right) e^{x}$

 $\left(\dot{\cup}1.5
ight)$ أحسب التكملات التالية -b

 $I_2 = \int_2^3 \left(\frac{x^3 - 3x + 3}{x^2} \right) dx$ $I_1 = \int_0^1 \left(x^2 - 3x + 3 \right) dx$

$$I_3 = \int_1^3 (e^{2x} + e^{-2x}) dx$$

(0.75) $z^2-8z+17=0$: المعادلة التالية C=0 المعادلة التالية (C=0.75) نعتبر في المستوى العقدي المنسوب الى معلم متعامد ممنظم مباشر (C=0.75) النقط C=0.75 التي الحاقها على التوالي هي:

c = 1 - i b = 1 + i a = i

 $\left({\it io}.75
ight)C$ و B و A الشكل المثلثي الاعداد -a

 $\left(\mathcal{O} \right) ABC$ بين أن $\frac{c-b}{a-b} = -2i$ ثم استنتج طبيعة المثلث -b

M من المستوى العقدي و z لحق نقطة M من المستوى العقدي و z لحق نقطة -d صورة M

 $\frac{\pi}{2}$ أ- بالدوران R الذي مركزه النقطة z=i وزاويته هي

z=1+i التي لحقها \overrightarrow{U} التي لحقها ب- بالازاحة ذات المتجهة التي لحقها

(l) حدد الكتابة العقدية للدوران R والازاحة -1

تحقق أن صورة النقطة A بالدوران R هي النقطة D ذات اللحق -2 (ن صورة النقطة D خات اللحق -2

(0.5) حدد E صورة C بالازاحة -3

التمرين الثاني (4,5نقطة)

 $U_{0}=3$ لتكن $\left(U_{n}\right)$ المتتالية العددية المعرفة بمايلي : لتكن $\left(U_{n}\right)$ المتتالية العددية المعرفة بمايلي

 $(\dot{\omega}0.5)$ $(\forall \mathbf{n} \in \mathbf{N}); U_{n+1} + \frac{1}{2} = \frac{3(u_n + \frac{1}{2})}{2(u_n + 2)}$ بين أن $-\mathbf{a}(1)$

 $\left(\dot{\omega}0.5
ight)\left(orall\,\mathbf{n}\in\mathbf{N}
ight);\!U_{\scriptscriptstyle n}\succ\!rac{1}{2}$ بين بالترجع أن $-\!b$

 $\left(\dot{\mathcal{G}} \mathbf{1} \right) \left(\forall \, \mathbf{n} \in \mathbf{N} \right) ; \boldsymbol{U}_{n+1} - \boldsymbol{U}_{n} = -\frac{\left(2 \boldsymbol{u}_{n} + 1 \right)^{2}}{4 \left(\boldsymbol{u}_{n} + 2 \right)} \, \boldsymbol{U}_{n} - \boldsymbol{C}$

ثم بين أن المتتالية $\,U_{_n}\,$ تتاقصية واستنتج أنها متقاربة

 $(\forall n \in \mathbb{N}); V_n = \frac{2}{2u_n + 1}$ نضع (2

 $(\dot{\omega}1)$ بين أن المتتالية (V_n) حسابية -a